TER - ELECTRON - ARCHIMEDES MAY 1989 £1-40

ACOR

BUDGET PRINTERS:
Three new low-pric
models reviewed

- GET ORGANISED:

Back up your troubles
from Psion to Beeb

SUPER SURVEYS:
Display questionpai
results graphica

‘_mp ORaNECLASS:

HEADEB SURVEY
£1000 of Acorn
kit to be won

"~ 'OnAre, Beel]_am{.E!k o R

it




ISSUE NO 82

BBCACORN

USER
=

MAY 1989

NEWS

&

COVER FEATURE

Ray tracing comes to the BBC
micro and even the Electron on
pages 66-71

Cover by Paul Allen

EDITORIAL

ow often have you,
H with your model B,
tried to get data out of

one program into another? If
it's a 20k screen from a drawing
program, or perhaps just text
then it may be possible. But
more complex interworking is
rare on the 8-bit machines, At
BBC Acorn User we've tried to
ease this, with explanatory
articles and even January’s
poster on file transfer.

But file transfer is much
more important with the Arc -
in fact Risc OS encourages it.
No single program can do
everything, so the idea is to
use sets of programs together.
To make this work, software
writers must get it clear: it's
vital that you can swap data
with other programs easily.
After the desktop itself, this is
the biggest step from Beeb to
Arc.

This is my last month as
editor - I'm moving on to
make DTP work at Redwood
Publishing. Good luck to Geoff

Bains who's taking over.

el
Director |

el Assistunt Edito
nellav. Arr Ediror

BBC ACORN USER MAY 1989

o Publishing 1988, Al ¢

Unix on Econet, 7
DTP from Computer Concepts,
plus the latest on the BEC Acorn
User Show

CUSTOMER HOTLINE 10
GOMMS COLUMN 13

Lam from DTI helps schools buy

much needed hardware
NOTICEBOARD 18

Details of next month's BBC
Avcorn User, results of December’s
Mega Music competition and rthe
June dates for your diary.

READER SERVICE 18
BLUNDERBOX 18

Corrections to the PrtSc unlity
from the August 1988 issue.

FEATURES

BALL OF MIRRORS

Ric}mrd Br(i\\'ning RI‘J"U\\:.‘; sOme
light on the complex subject of
ray tracing to create some realistic
3D graphics

QUESTION TIME 73

How can you use your BBC
micro sensibly when conducting
a survey? Joe Telford discovers
the answer and shows some neat
ways of presenting the results of
1 questionnaire

DATA GETS GOING 80

The Psion Organiser is the most
F[]r[’ilhlt‘ IJI- ;l'l'll\ L'UTII[]U[UI" ]Ju'l iL‘i
size can be a drawback as well as
an advantage. Simon Hewitt tells
how wiring it up to your BBC
micro. may overcome this and
help you ger going

fine Meleroon, Technical Editor Robert M
. Art Assistunt Rolun 1

id Nankes, Publishing Se

E

Ad Ma

i Diccctor Michs

stk Place, | ) Tel: avans vqua. T Ciiled A REDoor. Ao
wibor by Trumps Soodio, Ware, Herts. Prms producii s Primt D ol
te reserved. Acom bea ropistored readomark of Actim Compurers Led: Ry

Tim Chappell concludes his look
at floating points on the Archi-

eq Executive S
torial Director  hristopher Ward

medes and shows how to put
| constants in your programs

SCHOOL REPORT 88
Chris Drage and Nick Evans
round up the best of educational
software for the classroom and
the home

REVIEWS
GAMES PAGE 121

Sam Greenhill scans the software
market and presents the latest
and most interesting catalogue of
games releases

123

GAMES REVIEWS

DOS SOLUTIONS 129

Dave Futcher found Shibumi’s
Problem Sofver could give him and
his Master 512 an easier life

PICTURE PERFECT? 132

Sean Sollé is art eritic 1o Kathy
Lews" Proriisan masterpleces

SURVEY

Reader survey 30
Tell us what you'd like to see in |
BBC Acorn User !

REGULARS

HINTS AND TIPS 41

Drawing in mode 7, a Basic line

editor and utilities for the Beebh

and Elk — all from David Athertan
ARG AGORA 46
David  Acton  introduces @

keystrip routine that will also run
on vour Master, and tells us how
to speed up our ROMs and
prov

YELLOW PAGES

le easy rext-editing

97

Our games fanatics provide the
lowdown on Tamk Attack, the
battleship board-game from CDS.
Plus there’s Superman and Cirens
Games the iurlg awaited duo from
Tynesoft

Three low-cost

printers  prove
that nine pins are enough for
Graham Bell

LETTERS 137
ADVERTISERS'S INDEX 142
FREE ADS 143
ACORN ABUSERS'
DIARY 144
READER

OFFERS  65,78,94,135
NEXT MONTH

An introduction to PostScript
and the Qume Crystal Print|
Publisher, the more affordable |
PostScript printer. What are the |
best databases for education? Plus |
all your favourites — News, .-\gnm;
and Hints and Tips. |

1 Assistant Christng deal P
Mulline. Depuiy Ad
derson Haddick. Group E

crion Assisgant Sally-An
crry Hoxdder, Sales

Fisrritnuted by BBC M
Pulitishing is a reptistered data

Sweeney, Art
ecutiv ichand

rented by Riverside Press, Gillingla
59 Marvle
cr. [S8N o




ast month’s article showed you

how to use the Archimedes

ﬂrmling point emulamr, and in-

troduced the complete set of

floating point instructions that
vou can use within your ARM machine
code programs. Basic 5 can’t handle the
assembly of these instructions itself, and
so on last month’s BBC Acorn User
monthly disc, there was a Basic library
program that allowed you to assemble
the floating point instructions. So you
could include the line:

EQUS ("MNFEAL F1,F0")
in your listing to assemble an MNF
floating point instruction, But with last
month’s program, there were still a
number of problems with assembling
floating point machine code.

This month, there's an improvement
to the original floating point assembler
| program. Due to the length of the
listing, it can’t be carried in the yellow
pages, but the whole thing (the original
plus the improvements) are on this
month’s disc.

The improvements to the original
encoder provide several new features.
The original demanded that each instruc-
tion carried its condition codes — so AL
(meaning the instruction is always carried
out) wasn't optional as it is with the
normal Basic ARM assembler.

The second problem was storing
floating constants like 10.2345 in your
program. For integers, you can use
EQUD to put a 32-bit value into
memory, but there was no equivalent for
floating point numbers.

The third problem is that of inpur and
output. Printing a floating point number

BBC ACORN USER MAY 198y

Eqtpae
Tim Chappell

is difficult. The new version of the
library program fixes all three of these
points.

If you have experimented with the
floating point facility included on last
month’s disc, you will no doubt have
found that although its faciliries are very
powerful, it lacks an casy way of
incorporating constants into calculations.
For example the following calculation
would prove very difficult to arrange:

FO = FO * 1234.567E-89

The co-processor has eight inbuilt im-
mediate mode constants, which are useful
for many caleulations — but their range is
limited. If the caleulation you wish to
carry out doesn’t involve one of the
inbuilt constants then you must find an
alternative way of calculating the constant
by multiplication and division, and plac-
ing it in a floating point register. Having
placed a constant in an FPU register, it
can then he involved in any further
calculation.

ARITHMETIC
ON THE DOT

We conclude our look at floating point instructions by
showing you how to put constants in your programs

There are several ways to do this.
First, if the constant is an integer and can
be stored in an ARM register, it can be
transferred from there to an FPU register
using the FLT instruction:

MOV RO, #32
EQUD FNencede ("FLTE FO,R0"); FO0=32

Bur this method is limited — only integers
can be transferred, and many constants
will not be integers. You are also limited
to the 32-bit size of the ARM register,

Second, if the constant can be calculat-
ed using the FPU instructions, then this
may be uscful. So to place the value of pi
in Fo, use:

EQUD FNencode ("MNFE EO, §#1")

EQUD FNencode ("ACSE FO0,FO0")
This works because pi is the arcosine of -1
(remember the trigonometric calculation
work in radians).

Third, you could manufacture the
constant by multiplication and division
of either immediate constants or integers
transferred from the ARM registers.

But the best way to do this is to load
the constant directly from memory. This
provides an adequare range of constants
from g¢E+tggog to 1E-gggg with 18
decimal places.

To store a constant in memory and
then load it into an FPU register, you
need to be aware of the format in which
the FPU stores its numbers. There are in
fact four different formats in which a
register may be stored: single precision,
double precision, extended double preci-
sion and packed binary coded decimal -
the same as the four precisions that a
number can be kept in. It is packed BCD
which is of most use to us, since it is
easier to convert normal scientific nota-

By




ARCHIMEDES

tion into this format. The format requires
three 32-bit words to store the constant
in, with the format shown in rable 1.

Lach decimal digit in a BCD number
is put in four binary bits — so 205 would
become oo1o0ocoteot. The top four birs
of the ¢6-bit packed BCD are the sign
bits saying whether the number is
positive or negative, and the nibble is
arranged as follows:

T B 1 O 00|
SNSRI == S
M is the mantissa’s sign, E is the
exponent’s sign. If the bit is sct, it means
the number is negative. A number like
1,23E-4 (0.000123) has a clear (positive)
M hit but a set (negative) E bit.

The routine in the new version of the
floating point assembler provided on the
May monthly disc converts a number
passed to it in string form, into the
corresponding 12-byte string which rep-
resents the constant to the FPU. Since
the routine always returns a 12-byte
string, there is no need for an ALIGN
directive following an included constant.
Constants may be introduced into a
program using

EQUS FNfconst ("number")
Where the ‘number’ string is one of the
following forms:

+/ —mmmmm. . . .. -3456
+/-m . mmmm 3.456
+/-mE+/-ecece -6E-23
+/=m.mmmmE+/ -eeee 6.789E10

STRS (value) is also acceptable where
value is a normal Basic variable.

The number for conversion is passed
as a string because this allows numbers
of much greater precision than Basic
itself allows to be included as constants
(otherwise Basic would round them to its
usual nine or 1o-digit precision before
passing them to the routine).

The following code can be used to
transfer a constant from memory to an
FPU register:

ADR RO,const1

EQUD FNencode ("LDFP F0, (R0) ")

.constl EQUS ENfconst ("22.12E-69")
The ADR directive points the ARM
register Ro to the storage area for the
constant, and the LDFP command loads
the BCD constant 22.12E-6¢ into Fo,

To convert the number stored in
packed BCD form to one of the other
formats so it can be used in double or
extended precision arithmetic, you usc:

ADR RO, value
EQUD FNencode ("LDFE F0, (RO) "}
EQUD FNencode ("STFE FO, (RO} ")

.value EQUS FNfconst ("11.04E-66")

L1

This loads the value into Fo in BCD,
then stores it back at .value in extended
precision, Extended precision takes up
three 32-bit words just like the packed
BCD format, so vou don’t need to
Ieserve any exrra space.

This is particularly useful if you wish
to carry out further calculations on the
constant and don’t wish to lose any
accuracy. Storing a value in extended
precision format ensures no further loss
of accuracy occurs.

The third improvement to the encoder
allows output of floating point numbers
from the unit. The routine will convert
any packed BCD (P) format number into
a string with a specified number of
decimal places:

i.laR RO, store
EQUD FNenccde ("STEP FO, [RO1")

:I;tare EQUDO :EQUDO :EQUDO; storage area
]

PRINT FNfprint (storae,9)

The FNfprint routine has two parameters.
The first i1s the address of the floating
point number (which must be in packed
BCD format only — it can’t deal with the
other three formats). The second is the

number of decimal places required (so in
the above example nine decimal places
will be returned). This can be any value
between o and 18.

Note that although there are a maxi-
mum of 18 decimal places, you can’t
always rely on all of these. Calculations
in other precision modes will limit the
precision of the calculation result. Gen-
erally, if a caleulation has involved a
single precision number, then only nine
digits will actually be significant and for
a double precision calculation only 17
digits. Note that the instructions FML,
FRD and FDV are only calculated to
single precision accuracy,

Since the routine returns a string, then
you can convert it into an actual Basic
variable using the Basic VAL instruction.
Two words of warning — because the
floating point system can manipulate
numbers far larger than Basic, then an
error may occur if the value is too large
for a Basic variable to hold.

Similarly some values will be too small
to be held in a Basic variable, and will be
rounded to zero. Second, remember to
assign the value to a floating point
variable. So x=VAL string$, not
x% = VAL string$§.

As a bonus, you can check with the
FNsuitable routine that a number can be
expressed properly by a Basic variable.
This it will return TRUE if it can, or
FALSE if it is too large or small. The
fn]]nwing is an cxamplc of its use:

IF FNsuitable (address,places) THEN
A=VAL (FNfprint (address,places))

The two parameters required for the
function are the memory address of the
number to be checked (in packed BCD
form) and the number of decimal places
required.

That completes the floating point
encoder, and gives you all you need to
make full use of the floating point
emulator in your ARM machine code
programming.

| S | e3] e2| el| e0|ml8|ml7|ml6|
| | | | | | | | I
|ml5|ml4 |m13|ml2|mll|ml0| m9| m8]|
I | I I | I I | |
| m7] m6| m5| m4| m3| m2| ml| mO|
I | | | I I | I |
Where: S holds the sign bits

en is an exponent digit

mn is a mantissa digit

Table 1. Packed BCD format allows a 19-digit mantisse and 4-digit exponent

BBC ACORN USER MAY 1989



